Oxford A Level Sciences

AQA Chemistry

31 Organic synthesis and analysis Practice questions

Question number	Answer					Marks	Guidance	
1	 In each section: If wrong or no reagent given, no marks for any observations; Penalise incomplete reagent or incorrect formula – but mark observations Mark each observation independently Allow <i>no reaction</i> for no change / no observable reaction in all three parts, but not none or nothing Q says one test. If two tests are given, score zero 							
1 (a)	R primary alcohol S tertiary alcohol	K ₂ Cr ₂ O ₇ / H ⁺ (Orange) goes green no change	KMnO₄ / H ⁺ (purple) goes colourless no change	Lucas test (ZnCl ₂ / HCl) No cloudiness Rapid cloudiness		1 1 1	1 mark for reager R observation, 1 observation. allow acidified po manganate and a potassium dichro oxidation number Penalise wrong s colour	mark for S tassium acidified mate without 's
1 (b)	T ester U acid	Na ₂ CO ₃ / NaHCO ₃ named carbonate No change Effervesce nce or (CO ₂) gas formed	metal No change Effervesc ence or (H ₂) gas formed	named indicator No effect acid colour		1 1 1	SOCI ₂ no change Fumes /	

Oxford A Level Sciences

AQA Chemistry

31 Organic synthesis and analysis Practice questions

1 (c)						1 mark for reagent, 1 mark for R observation, 1 mark for S
		Fehling's / Benedict's	Tollens' / [Ag(NH ₃) ₂] ⁺	$K_2Cr_2O_7$ / H ⁺	1	observation.
	V Ketone	no change	no change	no change	1	
	W aldehyde	Red precipitate	Silver mirror	(Orange) goes green	1	penalise wrong starting colour

AQA Chemistry

					J., AgCl ₂ .		
propan-1-ol	Acidified potassium dichromate	sodium	Named acid + conc H ₂ SO ₄	named acyl chloride	PCI ₅	1	
	(orange) turns Green	effervescence	Sweet smell	Sweet smell /misty fumes	Misty fumes	1	
propanal	add Tollens OR Fehling's / Benedict's	acidified potassium dichromate	Brady's or 2,4-dnph			1	if dichromate used for alcohol cannot be used for aldehyde
	Tollens: silver mirror OR Fehling's/ Benedict's: red precipitate	(orange) turns green	Yellow or orange precipitate			1	
propanoic acid	Named carbonate/ hydrogencarb onate	water and UI (paper)	Named alcohol + conc H_2SO_4	Sodium or magnesium	PCI ₅	1	if sodium used for alcohol cannot be used for acid
	effervescence	orange/red	Sweet smell	effervescence	Misty fumes	1	if PCI_5 used for alcohol cannot be used for acid
1-chloro propane	NaOH then acidified AgNO ₃	AgNO ₃				1	If acidification missed after NaOH, no mark here but allow mark for observation
	white ppt	white ppt				1	

Oxford A Level Sciences

AQA Chemistry

31 Organic synthesis and analysis Practice questions

3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Allow (CH ₃) ₂ CHOH OR CH ₃ CH(OH)CH ₃ . Allow name propan-2-ol. Penalise contradiction of name and structure
	$\mathbf{M}: \overset{H}{\overset{H}{\underset{H}{\underset{H}{\overset{H}{\underset{H}{\overset{H}{\underset{H}{\overset{H}{\underset{H}{\overset{H}{\underset{H}{\underset{H}{\overset{H}{\underset{H}{\underset{H}{\overset{H}{\underset{H}{\underset{H}{\overset{H}{\underset{H}{\atopH}{\underset{H}{\atopH}{\underset{H}{\underset{H}{\atopH}}{\underset{H}{\underset{H}{\atopH}}{\underset{H}{\atopH}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	1	Allow CH ₃ CH=CH ₂ . Allow name propene ignore -1- but penalise other numbers. Penalise contradiction of name and structure
	Step 1 : NaBH ₄ OR LiAlH ₄ OR Zn/HCl OR H ₂ /Ni OR H ₂ /Pt	1	Ignore name if formula is correct ignore solvent ignore acid (for 2nd step) but penalise acidified NaBH ₄ Apply list principle for extra reagents and catalysts
	nucleophilic addition	1	Accept addition. Penalise electrophilic. Ignore reduction.
	Step 2: conc H ₂ SO ₄ OR conc H ₃ PO ₄ OR Al ₂ O ₃	1	Apply list principle for extra reagents and catalysts.
	Elimination	1	Independent from M5 penalise nucleophilic or electrophilic ignore dehydration
	Step 3: HBr electrophilic addition	1 1	Apply list principle for extra reagents and catalysts. Independent from M7
4 (a) (i)	C ₆ H ₅ NO ₂	1	
4 (a) (ii)	CH ₃ (CH ₂) ₂ CH ₃	1	
4 (a) (iii)	CH₃COOH	1	
4 (b) (i)	catalyst	1	
4 (b) (ii)	catalyst	1	
4 (b) (iii)	oxidising agent	1	
5	Add sodium hydroxide and warm	1	
	Add nitric acid	1	
	Add silver nitrate solution If compound A is a chloroalkane a white precipitate of silver chloride would be formed.	1	
6 (a)	aldehyde	1	
6 (b)	propanal	1	
7	Add bromine water to the sample and shake. If a C=C is present the bromine water would decolourise.	1 1	